Mechanistic and physiological implications of the interplay among iron-sulfur clusters in [FeFe]-hydrogenases. A QM/MM perspective.
نویسندگان
چکیده
Key stereoelectronic properties of Desulfovibrio desulfuricans [FeFe]-hydrogenase (DdH) were investigated by quantum mechanical description of its complete inorganic core, which includes a Fe(6)S(6) active site (the H-cluster), as well as two ancillary Fe(4)S(4) assemblies (the F and F' clusters). The partially oxidized, active-ready form of DdH is able to efficiently bind dihydrogen, thus starting H(2) oxidation catalysis. The calculations allow us to unambiguously assign a mixed Fe(II)Fe(I) state to the catalytic core of the active-ready enzyme and show that H(2) uptake exerts subtle, yet crucial influences on the redox properties of DdH. In fact, H(2) binding can promote electron transfer from the H-cluster to the solvent-exposed F'-cluster, thanks to a 50% decrease of the energy gap between the HOMO (that is localized on the H-cluster) and the LUMO (which is centered on the F'-cluster). Our results also indicate that the binding of the redox partners of DdH in proximity of its F'-cluster can trigger one-electron oxidation of the H(2)-bound enzyme, a process that is expected to have an important role in H(2) activation. Our findings are analyzed not only from a mechanistic perspective, but also in consideration of the physiological role of DdH. In fact, this enzyme is known to be able to catalyze both the oxidation and the evolution of H(2), depending on the cellular metabolic requirements. Hints for the design of targeted mutations that could lead to the enhancement of the oxidizing properties of DdH are proposed and discussed.
منابع مشابه
Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.
Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert,...
متن کاملA look into the “H-Cluster” of FeFe-Hydrogenase through spectroscopic and synthetic methods
Since iron-sulfur clusters exist in our oxidizing environment, it can be concluded that at one time in our evolutionary history that the environment was instead a reducing environment. Iron-sulfur clusters which contain high spin Fe(II) and Fe(III) tetracoordinated metals can help facilitate electron-transfer processes, nitrogen fixation, catalytic sites in hydrogenases, and oxidation of NADH t...
متن کاملThe Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [F...
متن کاملThe crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.
Biological formation and consumption of molecular hydrogen (H2) are catalyzed by hydrogenases, of which three phylogenetically unrelated types are known: [NiFe]-hydrogenases, [FeFe]-hydrogenases, and [Fe]-hydrogenase. We present a crystal structure of [Fe]-hydrogenase at 1.75 angstrom resolution, showing a mononuclear iron coordinated by the sulfur of cysteine 176, two carbon monoxide (CO) mole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 46 شماره
صفحات -
تاریخ انتشار 2011